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Dynamical Systems with Relaxation Time 

M a r t i n  Machfi(:ek 1 

Received November 7, 1986 

We define mathematically a class of dynamical systems that exhibit relaxation 
corresponding to that observed in physical systems, and then show that this 
class is identical with the class of K-mixing dynamical systems. 
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Equilibrium statistical mechanics of Hamiltonian systems is based on the 
observation that after a certain time--called the relaxation time- some 
isolated Hamiltonian systems, such as a gas, come from any initial 
conditions to a state of statistical equilibrium. In this state we can, by 
measuring macroscopic observables, learn nothing more about the initial 
conditions of the system than the values of conserved quantities (for 
definiteness we shall speak of energy E, momentum P, and angular 
momentum M); this is equivalent to the probability distribution being 
given by the ergodic invariant measure corresponding to these values of E, 
P, and M, the microcanonical distribution. Hence the time average 

T T 1Sof(X,)dt of a function f of the microstate X, of the system 
approaches its ensemble average with respect to the microcanonical 
distribution, Sf(x)d#(x), if only T is of the order of several times the 
relaxation time. Reed and Simon (1) raise the question of what properties of 
the dynamical system are responsible for this phenomenon of relaxation. 
We shall see that the answer can be "K-mixing." I say "can be" because so 
far we have defined relaxation and the class of systems that possess it 
rather loosely; we shall give a physically reasonable definition and then 
show that the class of systems with relaxation time is the same as the class 
of K-mixing systems. 
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Let s be the phase space of the system and x its points, the 
microstates; the trajectory of the system in s will be denoted by Xt. By 
measurements we determine the microstate of the system not completely, 
but by a rather small number, say M, of values of phase functions 
gin: s ~ ~, m= 1,..., m. The equivalence between states indistinguishable 
from each other by these measurements induces a partition ~ of s into 
macrostates, ~ = {Ai}; each A; consists of the points x for which gm(X) 

have the same value within the accuracy of the measurement. Let the 
dynamical group be {T,}; hence X ,=  T, Xo. Define, as usual, T , I ~ =  
{ T71Ai}; measuring g at the time t, we find to which Ag the state X, = T, Xo 
belongs, or to which set TTIAi of the partition T , t ~  the state X o belongs; 
and measuring g at the times tl,..., 6 ,  we find to which set of the partition 
T q ~ T g a ~ . . . T ~  the point Xo actually belongs. (The product of 
partitions ~ = {A~} and t /= {Bj} is defined by i t / =  {A~c~ Bj}.) 

The partition corresponding to the phase functions E(x), P(x), and 
M(x) is invariant against the evolution; T, Xo remains forever in the same 
set of this partition. The phenomenon of relaxation occurs within these 
sets, or, as we would normally say, within energy hypersurfaces. Therefore 
we may take one of these energy hypersurfaces for the phase space. We 
shall assume that after this restriction our dynamical system is strictly 
ergodic, or, in other words, that there is only one invariant measure (IM) 
concentrated on each energy hypersurface. For classical physical systems 
such as a gas there are no experimental facts that contradict this 
assumption. 

Now we come to the amount of information (2) contained in com- 
municating the result of measurement of the quantities gm" If we have no 
prior knowledge of the state of the system, this amount is, as is well 
known, 

H(~)=-~pi lnp~,  p~ =/~(A~), A~e~ 
i 

where p is the unique IM. If we know in advance that the system is in a set 
Bj of another partition q, then the amount of information is 

-~#(A~[Bj)lnt~(A~]Bj), tz(AilBj)=I~(A,c~Bj)/kt(Bj) 
i 

and its average is the conditional entropy 

/-/(~ I t/) = - -~  #(Ai r Bj)In tt(Ail Bj) 
0 

In particular, H({] T;-I~)= H({ 1 ~ r is the mean amount of information 
contained in communicating the results of measuring g(Yo) if the results of 
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measuring g(X,) are known in advance, and a ( 4 l  4-t1~-,2""s ,,) is the 
amount  of new information contained in g(Xo) provided g(X,l ) ..... g(X,.) 
are known. If we perform a series of measurements from the time t on, we 
can infer something about the state X0 at the time 0, but the amount  of 
information thus obtained is bounded by 

H ( 4 ) -  H(~ I ~ - ~ )  (1) 

where 

H(r162 H(4lr ,2')  
t l>~t 
t2 >~ t 

If the dynamical system exhibits relaxation, then, as t grows, the knowledge 
of g(X,~), g(X,:) .... contributes less and less to our ability to say something 
about g(Xo), hence H(~J~5~)  and H(4), the amounts of information con- 
tained in g(J(o) with and without prior knowledge of the values of g from 
the time t on, become almost equal. Therefore we could use the way in 
which (1) approaches zero as an indication of relaxation; and we could be 
more general, measuring g at the time 0 and another set of macrovariables 
f,, , ,  m ' =  1,..., M' (which corresponds to a partition r/), from the time t on. 

After these preliminaries, we define relaxation time (RT) as 

~(~,~l;e)=inf{TjH(4)--H(4ltl ~)<eforal l t>~T} (2) 

This means that measuring f later than z(4, tl; e), we cannot obtain more 
information than e about g(Xo). If ~(~, t/; ~) < oo for all e > 0, we say that 
the system has RT with respect to the pair (4, t/); this is equivalent to 
l i m ~  e(~, t/; r ) = 0 ,  where ~(4, q; r) is the inverse function to 3(4, t/; e). 
Finally, if the system has RT with respect to any pair (4, q), where ~ is a 
nontrivial partition (that containing no elements of measure 1--the 
functions gm must not be all constant #-almost everywhere), then we drop 
the qualification and say that it has RT. The meaning of this property is 
that as t grows, it becomes impossible to retrodict the value of any function 
(except a constant one) of J(o, no matter what we measure at times later 
than t. 

Now we can easily prove that the systems with RT are exactly the 
K-mixing systems. There are several characterizations of the K-mixing 
systems and one of them that suits our purposes is, for every two partitions 

and q (~ nontrivial), we have H(~[qZ~)-- - ,H(4)  as t-+ oo. This means 
precisely that the system has RT. 

We have not defined the RT of a dynamical system, only the property 
of having RT. This is in accord with physical experience: RT is not a 
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numerical quantity. However, for a given set (or pair of sets) of 
macroscopic observables, RT can be estimated to an order of magnitude; 
while this estimate may differ substantially when we go from one set of 
observables to another (e.g., from pressures to temperatures), it is relatively 
insensitive to improvements of measurement precision. The definition (2) of 
RT accounts for these empirical facts. As the uncertainty A g  m of gm is 
diminished, #(Ai) varies roughly proportionally to 1-ImAgm; hence the 
entropies vary as the logarithm of this quantity, and v(~, r/; e) grows as the 
logarithm of the uncertainty. 

There remains the dependence on e. For many K-mixing systems it is 
known that 

H(~) - H ( ~ l q - '  -~' o o ) ~ e  as t --+ oo 

Hence the dependence on e is also logarithmic. This is true not only for 
Bernoulli and Markov dynamical systems, but also, e.g., for the continuous 
fractions transformation. (3) In fact, I do not know of any K-mixing system 
for which the convergence is not exponential, but I have tried in vain to 
prove that it is exponential in general. Prof. Sinai has told me that 
exponential convergence of entropy does not hold for a general K-mixing 
system; he has not given an explicit counterexample, but he suggested 
where some may be found. Therefore, I end with an open problem: find the 
class of K-mixing systems for which the convergence of entropies is 
exponential, and, in particular, find a counterexample to the exponential 
convergence. 
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